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Surface modes at the nematic-isotropic interface
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We examine surface modes at the nematic-isotropic interface using the generalized dynamical Landau-de
Gennes theory. We assume an isothermal, infinite, unbounded nematic-isotropic system characterized by a
scalar order parameter, both phases having the same density and viscosity, respectively. The generalized
dispersion relation is obtained and analyzed in particular cases. Order parameter relaxation dominates in the
short wavelength limit, while in the long wavelength limit viscous damping becomes important. We study the
crossover between the two regimes and estimate the extent of this region for the liquid crystal 8CB.
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I. INTRODUCTION

The diffuse theory of the interface separating two bu
phases was developed in the late 19th Century by van
Waals @1#. Previously, interfaces had been modeled
Young, Laplace, and Gauss as surfaces. In this formula
the interface is regarded as a singular surface on which
sociated physical mechanisms are localized and represe
as boundary conditions to be applied at the surface@2,3#. The
use of this so-called ‘‘sharp interface’’ description of pha
boundaries in practical problems requires the solution o
free boundary problem. Free boundary problems are kno
to be extremely hard mathematically and indeed form a se
rate class in their own right.

In contrast, diffuse interface theories recognize that,
reality, the interface has a finite thickness~usually small
compared with typical macroscopic length scales! in which
physical quantities, such as density or composition, vary
tween their values in the adjacent bulk phases. Diffuse in
face models may be based on an extended thermodyna
involving gradients of the thermodynamic variables to a
count for nonlocal effects. Originally such theories were f
mulated to investigate near-critical fluids. However, th
have subsequently been refined and developed to accoun
a wide range of physical situations, such as liquid crys
@4#, superconductivity@5#, spinodal decomposition@6#, and
ordering transitions in alloys@7–9#. Rowlinson and Widom
@10# provide a thorough account of their historical develo
ment.

The phase-field models provide an example of a diffu
interface model in which the phase of the system at a p
ticular point in space and time is defined by the value o
hypothetical order parameter. The phase model of the fi
order phase transition associated with the solidification o
pure material was first proposed by Langer@11# and subse-
quently developed by a number of researchers@12–19#.

The phase-field formulation replaces the free-bound
problem associated with the sharp interface model of an
terface by a coupled pair of nonlinear reaction-diffusi
equations. The spatial and temporal variation of the or
parameter phase field is governed by the time-depen
1063-651X/2002/66~4!/041703~8!/$20.00 66 0417
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Ginzburg-Landau~TDGL! equation. The second equatio
~for temperature! is based on a modification of the heat equ
tion to allow a source term that accounts for latent heat p
duction at a moving interface. The original derivation of t
two equations was justified by requiring the free energy
the system to decrease monotonically in time. Subseque
Penrose and Fife@14# and others@15,16# applied the argu-
ments of irreversible thermodynamics to the derivation of
phase-field equations, establishing that they are consis
with non-negative local entropy production.

Thermotropic liquid crystal surfaces present a case
which the phase-field model can be used particularly fru
fully. On the one hand, in this case the phase-field or
parameter is no longer anad hocinvention, but known to be
a physically measurable quantity. On the other, the very
idity of liquid crystals permits sensible time scales for use
experiments. The relevant phase field theory of nema
isotropic phase transition@20,21# turns out to be just the
dynamical generalization of the familiar Landau-de Genn
theory of liquid crystal interface@4,22#. The necessary hy
drodynamic coupling has been included in the more co
plete dynamical Landau-de Gennes theory of Hess@23# and
subsequently by Olmsted and Goldbart@24#.

Apart from its intrinsic interest, the dynamics of liqui
crystal surfaces presents an interesting case study bec
the naive sharp interface and naive diffuse interface lim
lead to very different conclusions concerning the mode str
ture at the nematic-isotropic interface. The diffuse interfa
theory, solved assuming that the order parameter and ve
ity fields do not interact, gives rise to a purely diffusiv
surface wave whose mode structure is identical to the b
diffusive mode induced by a TDGL theory@21#. On the other
hand, the sharp interface theory yields a modified capill
wave, with a large propagating component. In this paper
make significant progress in reconciling these points of vie

In what follows we analyze the the surface eigenmotio
of the nematic-isotropic interface using the Hess-Olmst
Goldbart ~HOG! model. We consider an equilibrium plana
nematic-isotropic interface atTNI ~nematic-isotropic phase
transition temperature! as the base state of the system. T
front is then perturbed with a small amplitude monoch
©2002 The American Physical Society03-1
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matic wave and linear stability theory is used to obtain
dispersion relation. The paper is organized as follows.
Sec. II we describe the basic model and give the govern
equations. In Sec. III we present an asymptotic analysis
the equations of motions and the generalized dispersion
lation. Limiting cases of the dispersion relation are analyz
in Sec IV. Finally in Sec V, we draw some conclusions a
present some directions for future work.

II. EQUATIONS OF MOTION

The local state of a uniaxial nematic liquid crystal is d
scribed by a traceless symmetric second rank tensorQab

Qab5
3

2
fS nanb2

1

3
dabD , ~1!

where the unit vectornW is the usual nematic director, andf
is now the scalar order parameter.

In this paper, although not in future studies, we shall s
posenW to be fixed in space and time, and the relevant phys
is given by the scalar order parameterf(rW,t). We note that
this is an idealization which is in general not true duri
relaxation, and not even true statically close to an interfa
However, in our view, previous studies of related syste
@21# suggest that the lowest frequency and slowest relaxa
modes do approximately satisfy this condition when the s
face is homeotropic. Thus our idealized problem–that of
dynamics of a nonconserved order parameter weakly cou
to a conserved order parameter~the density! – contains a
good part of the essential physics of the nematic-isotro
interface, and is significantly easier to analyze.

Within the mesoscopic approach the free energy fu
tional is given by

F~Q,T!5E @ f ~Q,T!1 f F~¹Q!#dV, ~2!

where

f ~Q,T!5a~T2T* !QabQba2BQabQbgQga

1C~QabQba!2 ~3!

is the bulk Landau-de Gennes-free energy density@25,26#,
and

f F~¹Q!5
1

2
L1~]aQbg!21

1

2
L2~]aQab!2 ~4!

is the distortion~or Frank! @27# free energy density. The elas
tic constantsL1 andL2 are related to the Frank-Oseen elas
constants by the relationsK15K359fb

2(L11L2/2)/2 and
K259fb

2L1/2, wherefb is the bulk nematic order param
eter. In the so-called ‘‘one-constant approximation’’ (K1
5K25K35K) and fb51, the Landau-de Gennes-free e
ergy density becomes

f F5
1

9
K~]aQbg!2. ~5!
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In this paper we use this Landau-de Gennes form, but ret
ing the Frank-Oseen elastic constant so that comparison
bulk nematic quantities may be more easily made.

We suppose that the diffusion is sufficiently rapid that t
system remains in thermal equilibrium. We therefore igno
the equation for energy conservation and assume an iso
mal system at a temperature specified in the formulation
the problem. We suppose the system to be incompress
i.e., the velocities of motion considered are much less t
the sound velocityc, and for the circular frequencyv and
wave numberk, the inequalityv!ck is valid. In subsequen
work we shall relax these approximations, and also inclu
the full symmetry allowed for within the Landau-de Genn
formalism.

Using these approximations, the HOG coupled equati
of motion for the fluid velocity and the order parameter b
come@23,24#,

“•vW 50W, ~6!

r~] t1vW •“ !vW a5]gsag , ~7!

~] t1vW •“ !Qab5kab
a Qgb2Qagkgb

a 1lkab
s 1

1

g1
Hab

s .

~8!

The total stress tensorsab is given by

sab52pdab1sab
s 1sab

a 1sab
d . ~9!

sab
s 52hkab

s 2lHab
s , ~10!

sab
a 5Hag

s Qgb2QagHgb
s , ~11!

sab
d 52

dF
d]aQgr

]bQgr . ~12!

HereHab[2dF/dQab is the molecular field,h is the vis-
cosity not coupled to the rotation,g1 is the rotational viscos-
ity and l is a dimensionless coupling constant between o
entational order and flow which turns out to be the ratio
rotational viscosities. The tensor fieldkab[]avb is the ve-
locity gradient tensor, and the superscriptss, a, andd, denote
symmetric-traceless, asymmetric, and distortional portion
a tensor, respectively.

Using Eqs.~1!–~5! and considering a two-dimensiona
flow with horizontal and vertical velocity componentsu and
w in the x andz directions, respectively, the basic Eqs.~6!–
~8! take the form

]xu1]zw50, ~13!

r~] t1vW •“ !u52]xp2K¹2f]xf1h¹2u1
1

2
l]x

3~K¹2f2 f f!, ~14!

r~] t1vW •“ !w52]zp2K¹2f]zf1h¹2w2l]z

3~K¹2f2 f f!, ~15!
3-2
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~] t1vW •“ !f5
1

g1
~K¹2f2 f f!1

1

2
l~2]xu1]zw!,

~16!

where f f5d f /df53a(T2T* )f2 9
4 Bf219Cf3. The ma-

terial propertiesh, l, andg1 are assumed to be constant.
There are two typical lengths in the problem. These are

follows.
~i! The microscopic correlation lengthl f associated with

order parameter changes. This gives the interface width
equivalently the dimension of the order parameter profile

~ii ! A macroscopic length related to the capillary numb
and the Reynolds number. We consider the thin interf
limit of the problem. The physics involves capillary force
viscous dissipation, and fluid inertia. Assuming that no ot
physics enters, the control parameters are the interfacial
sion a, the viscosityh, and the mass densityr. From these
can be constructed only one lengthl h5h2/ra.

For usual nematics,l f'1026 cm andl h'1022 cm. The
ratio of these two lengthse5 l f / l h'1024 constitutes the
small parameter of the theory.

We rewrite Eqs.~13!–~16! in dimensionless form by mea
suring length in units ofl h and time in units oft* 5 l h

2/D
'1023 s, whereD5h/r'0.1 cm2/s is the viscous diffu-
sion constant. The resulting velocity unit is thenv* 5D/ l h
'10 cm/s.

We introduce the dimensionless quantities:f̄56Cf/B,
t524a(T2T* )C/B2, f̄ 5242C3f /B4, r̄5242C3v

*
2 r/B4,

p̄5242C3p/B4, l̄56Cl/B, h̄5242C3h/t* B4, ḡ1

5 l hv* g1 /K, e2516CK/B2l h
25 l f

2 / l h
2 . Omitting the bar no-

tation, the governing Eqs.~13!-~16! can be written as

]xu1]zw50, ~17!

r~] t1vW •“ !u52]xp2e2¹2f]xf1h¹2u1
1

2
l]x

3~e2¹2f2 f f!, ~18!

r~] t1vW •“ !w52]zp2e2¹2f]zf1h¹2w2l]z

3~e2¹2f2 f f!, ~19!

g1e2~] t1vW •“ !f5~e2¹2f2 f f!1
1

2
lg1e2~2]xu1]zw!,

~20!

where f f52tf26f214f3.
This well-known free energy density describes a fir

order nematic-isotropic phase transition. Fort5tNI51, the
two phases, nematic (fnem51) and isotropic (f iso50) co-
exist in equilibrium (f nem5 f iso).

In this paper we shall take the base state of the system
be a stationary planar nematic-isotropic interface situate
z50, such that the nematic lies in the regionz,0 and the
isotropic phase lies in the regionz.0. The front is then
perturbed with a small amplitude monochromatic wave a
linear stability theory will be used to obtain the dispersi
relation.x is the direction of the wave propagation along t
04170
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interface. For ease of presentation we discuss tw
dimensional perturbations to the system, with the und
standing that, since the system is isotropic inx andy direc-
tions ~neglecting the biaxiality of the nematic phase!, the
results carry over to the three-dimensional case if the w
number is interpreted as the modulus of the two-dimensio
wave vector.

III. ASYMPTOTICS

We now seek solutions of Eqs.~17!–~20! for e!1, which
are essentially diffusive in the inner region, but which a
governed by viscous hydrodynamic behavior in the outer
gion. In the inner regionf varies rapidly, whereas in the
outer region advective transport of the order parameter do
nates.

A. Outer region

Since in the outer regionf is a constant in each phas
(f5fnem51 for z,0 andf5f iso50 for z.0), vW obeys
the equations,

]xu1]zw50, ~21!

r~] t1vW •“ !u52]xp1h¹2u, ~22!

r~] t1vW •“ !w52]zp1h¹2w. ~23!

Thus, the outer problem is equivalent to the Navier-Sto
equations subject to the incompressibility condition. Th
problem has been much studied in the literature@28–30#.
The solution corresponding to the stationary planar interf
is given by,u05w050 and p05const. We now impose a
small periodic perturbation to the interface in thex direction
with wave numberk,

u5u01u1501U~z!exp@ i ~kx2vt !#

5U0exp@qz1 i ~kx2vt !#, ~24!

w5w01w1501W~z!exp@ i ~kx2vt !#

5W0exp@qz1 i ~kx2vt !#, ~25!

p5p01p15const1P~z!exp@ i ~kx2vt !

5const1P0exp@qz1 i ~kx2vt !#. ~26!

The circular frequencyv is, in general, a complex numbe
whose imaginary part defines the time scale (t521/Imv)
for the relaxation of the perturbation with characteris
length scale 2p/k.

Substituting these forms into Eqs.~21!–~23!, and linear-
izing, yields

05]xu11]zw1 , ~27!

r] tu152]xp11h¹2u1 , ~28!

r] tw152]zp11h¹2w1 . ~29!
3-3
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In this case we get a system of algebraic equations for
amplitudes

ikU01qW050,

$ iv1n~q22k2!%U02
ik

r
P050,

$ iv1n~q22k2!%W02
q

r
P050, ~30!

wheren5h/r is the kinematic viscosity. In order to obtai
the characteristic equation connectingq, k, andv, we put the
determinant of the system~30! equal to zero and obtain

~q22k2!@ iv1n~q22k2!#50, ~31!

with solutions q56k and q56 l where l
5kA12 iv/(nk2).

For a nematic-isotropic system~which here is merely a
simple binary liquid! of large fluid depths, wavelike solu
tions of Eqs.~27!–~29! in the nematic~regionz,0), are of
the form

u15~ ikAekz2 lCelz!ei (kx2vt), ~32!

w15~kAekz1 ikCelz!ei (kx2vt). ~33!

Similarly, in the isotropic phase~region z.0) ~using
primed quantities!,

u185~ ikA8e2kz1 lC8e2 lz!ei (kx2vt), ~34!

w185~2kA8e2kz1 ikC8e2 l z!ei (kx2vkt). ~35!

In Eqs.~32!–~35! the velocities are determined by two co
tributions: ~i! the potential flow described by the terms wi
amplitudesA and A8, which correspond to the velocity po
tentials,c5Aekzei (kx2vkt) andc85A8e2kzei (kx2vt); ~ii ! the
rotational flow represented by a vector potential with amp
tudesC(k22 l 2), C8(k22 l 2) describing fluids of finite vis-
cosity.

The dispersion relationv(k) is derived by consistency
relations on the quantities which appear in Eqs.~34! and
~35!. In the full diffuse interface approach these are provid
by matching the results in this section with those of an ana
gous analysis in the ‘‘inner region’’ close to the interface, a
we carry out this analysis below. In the classical sharp in
face approach, however, the inner region shrinks to z
thickness. Now, as is well known, these consistency relati
are determined by the boundary conditions at the sh
boundaryz50 on the nematic-isotropic interface, where t
stress tensor and velocity must be continuous@31#. The dis-
persion relation can be written as

vh
25

l 2k

l
v0

2 , ~36!

wherev0
25ak3/2r is the capillary wave dispersion relatio

for ideal fluids @31#, and a is the interfacial tension. The
04170
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subscripth means that the imaginary part ofvh describes
the viscous damping of the capillary waves. The details
the conditions are presented in the Appendix.

B. Inner region

To look for the solutions in the inner region, we rewri
Eqs. ~17!–~20! in terms of inner variablesz5x/e and j
5z/e,

]zũ1]jw̃50, ~37!

r̃~] t1vW̃ •“ !ũ52]zp2¹2f̃]zf̃1h¹2ũ

1
1

2
l]z~¹2f̃2 f f̃!, ~38!

r̃~] t1vW̃ •“ !w̃52]jp2¹2f̃]jf̃1h¹2w̃2l]j~¹2f̃2 f f̃!,
~39!

g̃1~] t1vW̃ •“ !f̃5¹2f̃2 f f̃1
1

2
lg̃1~2]zũ1]jw̃!,

~40!

where the velocity unit is nowl f /t* , r̃5242C3l f
2 r/B4t

*
2 ,

g̃15 l f
2 g1 /Kt

*
2 .

Consider first an equilibrium planar nematic-isotropic i
terface perpendicular to thej axis. The density and horizon
tal momentum equations@~37! and ~38!# are satisfied identi-
cally, and the remaining equations give

]jp05]j
2f̃0]jf̃02l]j~]j

2f̃02 f f̃
0
!, ~41!

]j
2f̃05 f f̃

0 , ~42!

where the subscript 0 refers to the equilibrium interface a
we have definedf f̃

0
5 f f̃(f̃0). Using Eq.~42! and integrating

Eq. ~41! we obtain

p05p`2
1

2
~]jf̃0!2, ~43!

wherep` is the common value of the pressure in the bu
phases where the gradient of the order parameter tend
zero. The order parameter profilef̃0(j) is the solution of Eq.
~42! with the boundary conditionsf̃0(2`)51 and f̃0(`)
50. Integrating Eq.~42! once, and imposing the boundar
conditions, gives (]jf̃0)252 f (f̃0). This result can be used
to obtain the energy per unit area of the interface, that is
interfacial tension, as

ã5E
2`

` F f ~f̃0!1
1

2
~]jf̃0!2Gdj5E

2`

`

~]jf̃0!2dj.

~44!

There is a one-parametric class of functions satisfying
~42!, with vanishing derivatives in every order at infinit
namely,
3-4
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f̃0~j!5
1

2 S 12tanh
j2j0

A2
D . ~45!

The freedom of choosingj0 anywhere represents the fa
that the position of the interface is arbitrary. We fix the cen
of the interface~defined byf̃051/2) to be atj50. This
extra condition givesj0 .

We may perturb this base state as follows:

ũ501Ũ~j!exp@ i k̃z2vt !],

w̃501W̃~j!exp@ i ~ k̃z2vt !#,

p5p0~j!1P~j!exp@ i ~ k̃z2vt !#,

f̃5f̃0~j!1F̃~j!exp@ i ~ k̃z2vt !#, ~46!

wherek̃5ek. Substituting Eqs.~46! into Eqs.~37!–~40! and
linearizing in perturbations, give

05 i k̃Ũ1djW̃, ~47!

2 i r̃vŨ52 i k̃P2 i k̃F̃dj
2f̃01h~dj

22 k̃2!Ũ2
1

2
i k̃lHF̃,

~48!

2 i r̃vW̃52djP2dj
2f̃0djF̃2~dj

22 k̃2!F̃djf̃0

1h~dj
22 k̃2!W̃1ldjHF̃, ~49!

2 i g̃1vF̃52HF̃1
1

2
lg̃1~djW̃2 i k̃Ũ !2g̃1W̃djf̃0 ,

~50!

whereH52dj
21 k̃21 f f̃f̃

0 can be conveniently thought of a
a quantum mechanical Hamiltonian operator@33#.

We now note that if we ignore the interaction betwe
velocity and order parameter fluctuations, the physics
completely given by the the eigenvalue equation Eq.~50!.
This is the TDGL limit in which the inner region dictates th
physics entirely. Eq.~50! becomes,HF̃5 ig1vF̃. Note that
f f̃f̃

0 is positive atj56` ~where f̃050 and f̃051) and

negative at z50 ~where f̃051/2). For our casef (f̃)
5f̃2(12f̃)2, one hasf f̃f̃

0
52212f̃0(j)112f̃0

2(j), which
equals21 at j50, and tends to12 for j→6`. It follows
that f f̃f̃

0 represents a potential well which must have at le

one bound state. In fact, sincek̃50 corresponds to a uniform
translation of the interface, we know thatv k̃5050 is the
eigenvalue with the eigenfunctiondjf̃0 @this can be easily
checked by differentiating Eq.~42! with respect toj]. Also,
since this function has no node, it must be the ground st
Since thek̃ dependence ofH is simply the additive constan
k̃2, it follows that djf̃0 is the ground state eigenfunction—
the so-called ‘‘slow mode’’—for allk̃ with eigenvalue@33#,
04170
r
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vf̃52 i
k̃2

g̃1

52 i
k2

g1
, ~51!

where the subscriptf̃ means that the imaginary part ofvf̃
describes the relaxation rate of the order parameter.

To find the general dispersion relation, we first elimina
Ũ andP from ~47!–~50!, obtaining

~ i r̃v2h k̃2!W̃5S i r̃v

k̃2
22h D dj

2W̃1
h

k̃2
dj

4W̃2HF̃djf̃0

2
3

2
ldj~HF̃!, ~52!

HF̃2 i g̃1vF̃5lg̃1djW̃2g̃1W̃djf̃0 . ~53!

UsingHdjf̃05 k̃2djf̃0 and the fact that the linear opera
tor H is self-adjoint, integrating Eq.~52! over all j, multi-
plying Eq. ~53! by djf̃0 and integrate, and eliminating
*2`

` F̃djf̃0dj, the following result is obtained:

~ i r̃v2h k̃2!~ i g̃1v2 k̃2!E
2`

`

W̃dj

52 k̃2g̃1E
2`

`

W̃~djf̃0!~2!dj. ~54!

Considering the relations between ‘‘inner’’ and ‘‘outer
quantities~due to different scaling!, the Eq.~54! can be writ-
ten as

2~ irv2hk2!~ ig1v2k2!E
2`

`

Wdz

52k2g1a@W~01!1W~02!#, ~55!

where we have used the matching condition

lim
j→6`

W̃~j!5 lim
z→60

W~z!5
1

e
W~06!, ~56!

Using Eqs.~33! and ~35!, the integral in Eq.~55! can be
evaluated to give

E
2`

`

Wdz5A2A81 i
k

l
~C1C8!. ~57!

Considering the continuity of horizontal velocity at the inte
faceU(0)5U8(0), weobtain the generalized dispersion r
lation

v21
ik2

g1
v5v0

2 l 2k

l
, ~58!

which can be written in a more compact form as

v22vfv5vh
2 , ~59!

where we have used Eqs.~36! and ~51!.
3-5
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IV. ANALYSIS OF THE DISPERSION RELATION

From the asymptotic analysis presented in Sec. III, it f
lows that in the short wavelength limit (k→`) the interface
must necessarily be regarded as diffuse. In this case,
relaxation of the order parameter is the important proce
and this is governed primarily by processes in the inner
gion in our asymptotic analysis. However, in the large wa
length limit (k→0) the interface is essentially sharp. No
the viscous damping process occurring in outer region do
nates. The transition between these two regimes takes p
whenvf5vh , which gives,

kc5
ag1

2

2rK F S 12
K

ng1
D 21/2

21G , ~60!

where we have used dimensional quantities~for 8CB the
experimental values are@32#: K51026 dyn, a51.5
31022 erg/cm2, g15h50.1 P, andr51 g/cm3). Using
these values we obtain the critical wave numberkc
53750 cm21 and the corresponding critical wavelengthlc
517 mm. For viscous damping,k,kc , and for the order
parameter relaxation,k.kc .

The numerical solution of Eq.~59! is presented in Fig. 1
There is a continuous transition between the viscous da
ing and order parameter relaxation regimes. To define
width of the crossover region between the two regimes,
use the difference between numerical and asymptotic pro
ones. These are plotted in Fig. 2. The width of the interfa
defined as usual as width at half height, takes the valueDk
57480 cm21.

We now analyze the viscous damping regime in m
detail. A numerical study of the solution of Eq.~36! in a wide
k range shows thatv(k) is a unique function ofk for all k.
Moreover, in the low- and high- viscosity limits, this solutio
assumes the asymptotic forms given below.

FIG. 1. The ‘‘phase’’ diagram (log10(1/t), log10k). The general
dispersion relation Eq.~58! ~continuous curve!, the Navier-Stokes
dispersion relation Eq.~36! ~dashed curve!, and the order paramete
relaxation dispersion relation Eq.~51! ~dotted curve!.
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A. Weak damping approximation „zv0zšnk2
…

In this limit vh differs from v0 only by a small quantity
gh . Thus in this regime it can be approximated byvh5v0
2 igh , by analogy with a damped oscillator. Using this a
proximation forl andvh we now obtain

gh5~12 i !S nv0

2 D 1/2

k. ~61!

The real part ofgh gives a small correction to the imaginar
part ofvh . Insertingv0 in Eq. ~61! we notice that the damp
ing coefficientgh increases withk ask7/4.

B. Strong damping approximation „zv0z™nk2
…

In this casel /k'12 ivh/2nk2. From Eq.~36! we now
obtain two solutions for the dispersion relation:vh50 and
vh52 iv0

2/2nk252 iak/4h. However, for vh50, vW 50,
and a finite static distortion of the interface does not sati
balance of forces.

The crossover between these two re´gimes takes place a
uv0u5nk2, which gives

k* 5
a

2rn2
, ~62!

where k* '0.75 cm21 for 8CB. For weak damping,k
!k* , and for strong damping,k@k* .

Thus, the transition in Fig. 1 takes place between a str
damping re´gime ~for which 2Imvh grows linearly withk)
and a pure order parameter relaxation re´gime. This explains
the linear character of the corresponding viscous re´gime
curve.

V. CONCLUSIONS

In this paper we have examined surface modes at
nematic-isotropic interface using the HOG generalized

FIG. 2. The difference between numerical2Im(v) ~continuous
curve in Fig. 1! and corresponding asymptotic values~dashed curve
in Fig. 1 for k,kc and dotted curve in Fig. 1 fork.kc) as a
function of log10k.
3-6



ra
,

nt

ro
er

pe
m
th

o
t

tic
ro
at
e

to

a
t

f

r

k
is
im
th
o
in
e
r

ro

th

ce a
ld-

ni-
de

so
p-

li-
is
this

c-

ases
-

-

ng

liq-

y
s
on

SURFACE MODES AT THE NEMATIC-ISOTROPIC INTERFACE PHYSICAL REVIEW E66, 041703 ~2002!
namical Landau-de Gennes theory@23,24#. We have assumed
an isothermal system characterized by a scalar order pa
eter, both phases having the same density and viscosity
spectively. Input parameters include the viscosityh, the ro-
tational viscosity g1 , a dimensionless coupling consta
between orientational order and flowl which is the analog
of the ratio between the rotational viscosities and a mic
scopic length scalee associated with order paramet
changes.

As we have already observed, this model does not ap
at first sight to include orientational degrees of freedo
Nevertheless, it represents an important idealization of
liquid crystal problem, a conserved density is coupled t
nonconserved order parameter whose statics is driving
phase transition.

We have considered the equilibrium planar nema
isotropic interface as the base state of the system. The f
was then perturbed with a small-amplitude monochrom
plane wave and the linear stability of the front was examin
to obtain the general dispersion relation~58!. The numerical
study of Eq.~58! in a widek range shows that for anyk only
one solution exists and this solution assumes asymp
forms corresponding to viscous damping (k→0) and order
parameter relaxation (k→`) processes. We have defined
crossover point between these two regimes occurring ak
5kc , wherekc is given by Eq.~60!. Furthermore, for 8CB,
we have estimated the magnitude ofkc , as well as the size o
the crossover region, and also the crossoverk* between
weak and strong damping order parameter relaxation
gimes.

We have developed a formalism which successfully lin
both the short wavelength limit, for which the interface
essentially diffuse and order parameter relaxation is the
portant process, and the long wavelength limit, for which
interface is essentially sharp and viscous damping is imp
tant. In future studies we shall use this method to exam
cases in which:~i! the difference in density between th
phases is included, in which case gravity-driven capilla
waves dominate the long-wave surface spectrum,~ii ! the heat
equation which explicitly takes account of latent heat p
duction at interface is considered,~iii ! a full orientational
order parameter is included, and~iv! the NI interface inter-
acts with a neighboring hard wall. The essential effect of
hy

,
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field would be to locate the interface and as a consequen
displacement of the interface would cost energy; the Go
stone soft mode with the eigenfunctiondjf̃0 then becomes
hard.
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APPENDIX: THE BOUNDARY CONDITIONS
AT THE SHARP INTERFACE

~i! The continuity of the stress tensor in the vertical dire
tion gives

szz2szz8 5a
]2§

]x2
, ~A1!

whereszz52p12h]w/]z and szz8 52p812h]w8/]z are
corresponding stresses for the nematic and isotropic ph
at the interface, and§5 iw/v is the instantaneous displace
ment of an interface point with horizontal coordinatex from
the mean interfacial plane, witĥ§&50. The pressure is ex
pressed asp52rg§2r]c/]t, p852rg§2r]c8/]t and
the interfacial pressurea]2§/]x2 is due to the interfacial
tensiona.

~ii ! The continuity of stress tensor components involvi
the horizontal direction givessxz5sxz8 , where sxz

5h(]u/]z1]w/]x) and sxz8 5h(]u8/]z1]w8/]x) are the
corresponding components for the nematic and isotropic
uid, respectively.

~iii ! The continuity of vertical and horizontal velocit
gives, w5w8 and u5u8. Using the velocity expression
~28!–~31!, these conditions lead to the dispersion relati
~36!.
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